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Sensors in iPhones 

Digital Compass [1] 

Image credits: 
[1] www.upaa.org 
[2] www.readwrite.com 
[3] www.hillcrestlabs.com 
 

Accelerometers &  
3-Axis Gyroscope [3] 

Proximity & Ambient 
Light Sensors [2] 
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Sensors in Cars 

Source: http://www.memsindustrygroup.org 
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The Industrial Internet of Things 
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Image Credit: General Electric 
Meeting of the Minds and Machines 
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 A “extreme harsh environment” includes extremes of temperature, 
pressure, shock, radiation and chemical attack. 

Extreme Harsh Environment 
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D.G. Senesky, ECS 
PRiME Joint 
International 
Meeting (2012) 
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 Sensing within harsh environments enables real-time 
monitoring of combustion processes, subsurface 
properties, critical components, and space 
environments. 
Ä Subsurface: pressure, temperature, flow, tilt and chemical conc. 
Ä Combustion: pressure, temperature and flame speed 
Ä Space: pressure, radiation, strain and magnetic fields 

 Commercial-off-the-shelf sensors and electronics are 
limited to temperatures below 200oC and short 
operation periods. 
 Technical challenges: 
Ä A new materials platform must be utilized to extend the operation 

limits (up to 600oC). 
Ä New sensing methodologies (e.g. packaging, temperature 

compensation, communication and power) must be developed. 

Real-time Sensing in Harsh Environments 
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Subsurface Monitoring 
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In-situ Combustion Monitoring 
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Goal: Clean and 
efficient industrial 

gas turbines  

Clean 
Emissions 
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Current Technology 
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Interval-based maintenance 
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 Semiconductor material 
Ä p-type with Al doping 
Ä n-type with N doping 

 200+ polytypes have been 
identified 
Ä Commonly used polytypes are  

3C-SiC, 4H-SiC and 6H-SiC 
Ä 4H-SiC is the dominant polytype 

for the power electronics 
industry. 

Silicon Carbide (SiC) 

Schematic of atomic arrangement and  
stacking order of SiC (M. Mehregany et al.). 

3C-SiC 6H-SiC 
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Material Properties (SiC) 

Material properties of SiC, AlN, GaN, diamond and Si. 
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 Property 6H-SiC GaN AlN  Diamond Silicon 

Melting Point (oC) 2830  
sublimes 2500 2470 4000 

phase change 1420 
Energy Gap (eV) 3.0 3.4 6.2 5.6 1.12 
Critical Field (×106 V/cm) 2.5 5.0 10 5.0 0.25 
Thermal Conductivity (W/cm-K) 5.0 1.3 1.6 20 1.5 
Young’s Modulus (GPa) 450 390 340 1035 190 
Acoustic Velocity (x103 m/s) 11.9 8.0 11.4 17.2 9.1 

Yield Strength (GPa) 21 - - 53 7 
Coeff. of Thermal Expansion (oC 
×10-6 ) 

4.5 3.7 4.0 0.8 2.6 
Chemical Stability Excellent Good Good Fair Fair 
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SiC Resonant Strain Gauge 

SEM image of polycrystalline 3C-SiC 
(7um thick) resonant strain sensor.  

Cross-sectional image of the SiC strain sensor 
fabrication process. 

Etch Trench 
Sacrificial/Release  
Layer 

Structural Layer 
3C-SiC 

2. R.G. Azevedo, D.G. Jones (Senesky), A. V. Jog, B. Jamshidi, D. R. Myers, L. Chen, X. Fu, M. 
Mehregany, M. B. J. Wijesundara, & A.P. Pisano, IEEE Sensors Journal  (2007) 

1. D.G. Senesky, B. Jamshidi, K.B. Cheng, and A.P. Pisano, IEEE Sensors Journal (2009) 
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SiC Sensor Operation at 600ºC 

  The polycrystalline 3C-SiC sensor resonates in air and can operate at 600°C in 
dry steam 

  The strain sensor has a sensitivity of 66 Hz/µεε  and resolution of 0.045 µεε 
in a 10 kHz bandwidth 

  This poly-SiC sensor utilizes a fabrication process that can be utilized realize 
other harsh environment sensors. 

D. R. Myers et al., J. Micro/Nanolith. MEMS MOEMS (2009) 
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SiC JFET at 600oC 

Measured I-V of JFET with W/L = 100 μμm/10 μμm for temperatures up to 600oC. Symbols 
mark measured values while solid curves show fit to the 3/2-power model. 

A. Patil, M. Mehregany and S. Garverick, Ph.D. Thesis (2009) 
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SiC/AlN Energy Harvesting 

Y.J. Lai et al., Hilton Head Conference (2012). 
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Output Power for Various 
Pressure Pulsations at 1 kHz 
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High-Temperature Wireless 

R. Wang, W. H. Ko, and D. J. Young, IEEE Sensors Journal  (2005) 

Telemetry module (Colpitts circuit) utilizing a SiC MESFET operated up to 400°C 
with a telemetry distance of approximately 1.0 m. 
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Material Properties (Gallium Nitride) 

Material properties of SiC, AlN, GaN, diamond and Si. 

 Property 6H-SiC GaN AlN  Diamond Silicon 

Melting Point (oC) 2830  
sublimes 2500 2470 4000 

phase change 1420 
Energy Gap (eV) 3.0 3.4 6.2 5.6 1.12 
Critical Field (×106 V/cm) 2.5 5.0 10 5.0 0.25 
Thermal Conductivity (W/cm-K) 5.0 1.3 1.6 20 1.5 
Young’s Modulus (GPa) 450 390 340 1035 190 
Acoustic Velocity (x103 m/s) 11.9 8.0 11.4 17.2 9.1 

Yield Strength (GPa) 21 - - 53 7 
Coeff. of Thermal Expansion (oC 
×10-6 ) 

4.5 3.7 4.0 0.8 2.6 
Chemical Stability Excellent Good Good Fair Fair 
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 The AlGaN/GaN 
heterostructure is currently 
being developed to make high 
electron mobility transistors 
(HEMTs) for the power 
electronics industry. 
 The piezoelectric, polarization-
induced, 2-dimensional 
electron gas (2DEG) at the 
AlGaN/GaN interface can 
improve the sensitivity of 
sensing devices. 
Ä Spontaneous polarization-

induced charges (at surface 
and interface) 

Ä Strain sensitive 
Ä  Ion sensitive 

AlGaN/GaN Sensor Development 

The jump in the macroscopic polarization  (discontinuity in 
dipoles) at the AlGaN/GaN interface causes a positive fixed 
polarization charge at this interface [M. Stutzmann, et al.]. 

Cross-sectional image of fabrication process for  
AlGaN/GaN high electron mobility (HEMT) based sensors. 18 
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AlGaN/GaN Strain Gauges 
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C.A. Chapin, H. Chiamori, M. Hou & D.G. Senesky, International Workshop on Structural Health Monitoring  (2013) 

SEM image of AlGaN/GaN high electron 
mobility (HEMT) based strain sensors. 

Experimental data obtained from characterization of AlGaN/GaN 
strain sensors at elevated temperatures. 

Gauge Factor = -81 at 92oC 
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AlGaN/GaN Device Integration 

 Development of multiple devices (HEMT circuits, energy harvesters, 
sensors and RF resonators) on a single chip using the multi-
functional properties of the AlGaN/GaN heterostructure. 
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GaN Sensors  
(e.g. acoustic, 
acceleration, 

pressure) 

GaN 
Piezoelectric 

RF Resonators 

GaN 
Piezoelectric 

Energy 
Harvester 

GaN High 
Electron 
Mobility 

Transistor 
(HEMT) Circuit 
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Monitoring of Hot Structures & Hot Climates 

Photo credit: 
www.the8planets.com 

Venus Climate 

Hydrothermal Vents 

Photo credit: 
DARPA 

“Smart” Hot 
Structure with 

Embedded 
Sensors 

Hypersonic Aircrafts 
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NASA’s MEDLI Suite 
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Mars Science Laboratory Entry, Descent, and 
Landing Instrument (MEDLI) Suite  

Image Credit: NASA JPL MEDLI Program 
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 Ceramic semiconductor materials (SiC, AlN & GaN) 
can extend the operation environments of sensors 
and electronics. 
 Harsh environment sensors can be used to  
Ä Illuminate properties (e.g. pressure, temperature, and 

gas content) of combustion processes & subsurface 
conditions. 

Ä Monitor the structural health of critical components. 
Ä Provide real-time feedback. 
 In addition, these materials can be used to create a 
multitude of devices (sense, power, processing and 
communication) on a single chip. 

Conclusions 
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1:30 pm 
HC 200-002 

 UC Berkeley, “Aluminum Nitride 
 High Temperature Strain Sensors” 
 UC Berkeley, “MEMS Piezoelectric  
Energy Harvesters for Harsh Environment  
Sensing” 
 GE Global Research, “Optical MEMS Pressure Sensors for 
Geothermal Well Monitoring” 
 Stanford University, “Development of High Performance BS-PT 
Based Piezoelectric Transducer for Structural Health Monitoring 
of High-Temperature Polymer-Matrix Composite Structures” 
 NASA Ames, “Development and Verification of an Aerothermal 
Thermal Protection System Heat Shield Instrumentation Plug for 
Flight on Mars Science Laboratory” 
 Stanford University, “Characterization of Gallium Nitride 
Heterostructures for Strain Sensing at Elevated Temperatures”  

SPECIAL SESSION: SHM for Harsh Environments  
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Thank You! 
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